
Week 8 - Friday



 What did we talk about last time?
 Exam 2!
 And before that?
 Review

 And before that?
 Master Theorem
 Solved exercises from Chapter 5









 We covered greedy approaches, where you simply want to 
take the next best thing
 These are often linear or O(n log n) due to sorting

 We looked at divide-and-conquer approaches
 Usually taking an unimpressive polynomial running time like O(n2) 

and improving it, perhaps to O(n log n)
 But there are harder problems that appear as if they might 

take exponential time



 Dynamic programming shares some similarities with divide 
and conquer
 We break a problem down into subproblems
 We build correct solutions up from smaller subproblems into larger 

ones
 The subproblems tend not to be as simple as simply dividing 

the problem in half
 Dynamic programming dances on the edge of exploring an 

exponential number of solutions
 But somehow manages to look at only a polynomial set!





 In the interval scheduling problem, some resource (a phone, a 
motorcycle, a toilet) can only be used by one person at a time.

 People make requests to use the resource for a specific time 
interval [s, f].

 The goal is to schedule as many uses as possible.
 There's no preference based on who or when the resource is 

used.



 The weighted interval scheduling problem extends interval 
scheduling by attaching a weight (usually a real number) to each 
request

 Now the goal is not to maximize the number of requests served 
but the total weight

 Our greedy approach is worthless, since some high value requests 
might be tossed out

 We could try all possible subsets of requests, but there are 
exponential of those

 Dynamic programming will allow us to save parts of optimal 
answers and combine them efficiently
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 We have n requests labeled 1, 2,…, n
 Request i has a start time si and a finish time fi
 Request i has a value vi
 Two intervals are compatible if they don't overlap



 Let's go back to our intuition from the unweighted problem
 Imagine that the requests are sorted by finish time so that f1 ≤ 

f2 ≤ … ≤ fn
 We say that request i comes before request j if i < j, giving a 

natural left-to-right order
 For any request j, let p(j) be the largest index i < j such that 

request i ends before j begins
 If there is no such request, then p(j) = 0
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 Consider an optimal solution O
 It either contains the last request n or it doesn't

 If O contains n, it does not contain any requests between p(n) and 
n

 Furthermore, if O contains n, it has an optimal solution for the 
problem for just requests 1, 2, …, p(n)
 Since those requests don't overlap with n, they have to be the best or they 

wouldn't be optimal
 If O does not contain n, then O is simply the optimal solution of 

requests 1, 2,…, n - 1



 It might not be obvious, but the last slide laid out a way 
to break a problem into smaller subproblems

 Let OPT(j) be the value of the optimal solution to the 
subproblem of requests 1, 2,…, j

 OPT(j) = max(vj + OPT(p(j)), OPT(j – 1))
 Another way to look at this is that we will include j in 

our optimal solution for requests 1, 2,…,j 
iff vj + OPT(p(j)) ≥ OPT(j – 1)



 Compute-Opt(j)
 If j = 0 then
▪ Return 0

 Else
▪ Return max(vj + Compute-Opt(p(j)), Compute-Opt(j – 1))



 Well, for every request j, we 
have to do two recursive 
calls

 Look at the tree from the 
requests a few slides back
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 The issue here is that we are needlessly recomputing optimal 
values for smaller subproblems

 You might recall that we had a similar problem in COMP 2100 
with the naïve implementation of a recursive Fibonacci 
function

 In the worst case, the algorithm has an exponential running 
time

 Just how exponential depends on the structure of the 
problem





 Finish weighted interval scheduling
 Segmented least squares
 No class next week!



 For after spring break:
 Read sections 6.2 and 6.3
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