
Week 8 - Friday



 What did we talk about last time?
 Exam 2!
 And before that?
 Review

 And before that?
 Master Theorem
 Solved exercises from Chapter 5









 We covered greedy approaches, where you simply want to 
take the next best thing
 These are often linear or O(n log n) due to sorting

 We looked at divide-and-conquer approaches
 Usually taking an unimpressive polynomial running time like O(n2) 

and improving it, perhaps to O(n log n)
 But there are harder problems that appear as if they might 

take exponential time



 Dynamic programming shares some similarities with divide 
and conquer
 We break a problem down into subproblems
 We build correct solutions up from smaller subproblems into larger 

ones
 The subproblems tend not to be as simple as simply dividing 

the problem in half
 Dynamic programming dances on the edge of exploring an 

exponential number of solutions
 But somehow manages to look at only a polynomial set!





 In the interval scheduling problem, some resource (a phone, a 
motorcycle, a toilet) can only be used by one person at a time.

 People make requests to use the resource for a specific time 
interval [s, f].

 The goal is to schedule as many uses as possible.
 There's no preference based on who or when the resource is 

used.



 The weighted interval scheduling problem extends interval 
scheduling by attaching a weight (usually a real number) to each 
request

 Now the goal is not to maximize the number of requests served 
but the total weight

 Our greedy approach is worthless, since some high value requests 
might be tossed out

 We could try all possible subsets of requests, but there are 
exponential of those

 Dynamic programming will allow us to save parts of optimal 
answers and combine them efficiently



3

9
7

12

14

20

4

2

5



 We have n requests labeled 1, 2,…, n
 Request i has a start time si and a finish time fi
 Request i has a value vi
 Two intervals are compatible if they don't overlap



 Let's go back to our intuition from the unweighted problem
 Imagine that the requests are sorted by finish time so that f1 ≤ 

f2 ≤ … ≤ fn
 We say that request i comes before request j if i < j, giving a 

natural left-to-right order
 For any request j, let p(j) be the largest index i < j such that 

request i ends before j begins
 If there is no such request, then p(j) = 0



Index

1

2

3

4

5

6

p(1) = 0

p(2) = 0

p(3) = 1

p(4) = 0

p(5) = 3

p(6) = 3

2

4

4

7

2

1



 Consider an optimal solution O
 It either contains the last request n or it doesn't

 If O contains n, it does not contain any requests between p(n) and 
n

 Furthermore, if O contains n, it has an optimal solution for the 
problem for just requests 1, 2, …, p(n)
 Since those requests don't overlap with n, they have to be the best or they 

wouldn't be optimal
 If O does not contain n, then O is simply the optimal solution of 

requests 1, 2,…, n - 1



 It might not be obvious, but the last slide laid out a way 
to break a problem into smaller subproblems

 Let OPT(j) be the value of the optimal solution to the 
subproblem of requests 1, 2,…, j

 OPT(j) = max(vj + OPT(p(j)), OPT(j – 1))
 Another way to look at this is that we will include j in 

our optimal solution for requests 1, 2,…,j 
iff vj + OPT(p(j)) ≥ OPT(j – 1)



 Compute-Opt(j)
 If j = 0 then
▪ Return 0

 Else
▪ Return max(vj + Compute-Opt(p(j)), Compute-Opt(j – 1))



 Well, for every request j, we 
have to do two recursive 
calls

 Look at the tree from the 
requests a few slides back

6

5 3

4 3

3

2

1

1

2

1

1

2

1

1

Uh oh.



 The issue here is that we are needlessly recomputing optimal 
values for smaller subproblems

 You might recall that we had a similar problem in COMP 2100 
with the naïve implementation of a recursive Fibonacci 
function

 In the worst case, the algorithm has an exponential running 
time

 Just how exponential depends on the structure of the 
problem





 Finish weighted interval scheduling
 Segmented least squares
 No class next week!



 For after spring break:
 Read sections 6.2 and 6.3


	COMP 4500
	Last time
	Questions?
	Exam 2 Post Mortem
	Dynamic Programming
	Previous approaches
	Dynamic Programming
	Weighted Interval Scheduling
	Interval scheduling
	Weighted interval scheduling
	Weighted interval scheduling example
	Notation
	Designing the algorithm
	p(j) examples
	More algorithm design
	Subproblems found!
	We've already got an algorithm!
	How long does Compute-Opt take?
	Needless recomputation
	Upcoming
	Next time…
	Reminders

